Unsupervised Pretraining for Sequence to Sequence Learning

نویسندگان

  • Prajit Ramachandran
  • Peter J. Liu
  • Quoc V. Le
چکیده

This work presents a general unsupervised learning method to improve the accuracy of sequence to sequence (seq2seq) models. In our method, the weights of the encoder and decoder of a seq2seq model are initialized with the pretrained weights of two language models and then fine-tuned with labeled data. We apply this method to challenging benchmarks in machine translation and abstractive summarization and find that it significantly improves the subsequent supervised models. Our main result is that the pretraining accelerates training and improves generalization of seq2seq models, achieving state-of-the-art results on the WMT English→German task, surpassing a range of methods using both phrase-based machine translation and neural machine translation. Our method achieves an improvement of 1.3 BLEU from the previous best models on both WMT’14 and WMT’15 English→German. On summarization, our method beats the supervised learning baseline.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised Sequence Learning

We present two approaches that use unlabeled data to improve sequence learning with recurrent networks. The first approach is to predict what comes next in a sequence, which is a conventional language model in natural language processing. The second approach is to use a sequence autoencoder, which reads the input sequence into a vector and predicts the input sequence again. These two algorithms...

متن کامل

Seismic Data Forecasting: A Sequence Prediction or a Sequence Recognition Task

In this paper, we have tried to predict earthquake events in a cluster of seismic data on pacific ring of fire, using multivariate adaptive regression splines (MARS). The model is employed as either a predictor for a sequence prediction task, or a binary classifier for a sequence recognition problem, which could alternatively help to predict an event. Here, we explain that sequence prediction/r...

متن کامل

Action Change Detection in Video Based on HOG

Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...

متن کامل

Disentangling Motion, Foreground and Background Features in Videos

This paper introduces an unsupervised framework to extract semantically rich features for video representation. Inspired by how the human visual system groups objects based on motion cues, we propose a deep convolutional neural network that disentangles motion, foreground and background information. The proposed architecture consists of a 3D convolutional feature encoder for blocks of 16 frames...

متن کامل

A Job Shop Scheduling Problem with Sequence-Dependent Setup Times Considering Position-Based Learning Effects and Availability Constraints

 Sequence dependent set-up times scheduling problems (SDSTs), availability constraint and transportation times are interesting and important issues in production management, which are often addressed separately. In this paper, the SDSTs job shop scheduling problem with position-based learning effects, job-dependent transportation times and multiple preventive maintenance activities is studied. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017